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Full-Wave Perturbation Theory for the Analysis of
Coupled Microstrip Resonant Structures

George W. Hanson, Member, IEEE, and Dennis P. Nyquist, Member, IEEE

Abstract–A full-wave perturbation theory for the system of
N coupled microstrip disk structures is presented. The theory
is based on the electric field integral equation description of the
circuit, which includes all of the wave phenomena associated
with the conductors and the surrounding media. This method
is suitable for quantification of nearly degenerate coupling be-
tween open microstrip disks, yielding the complex system ei-
genmodes. For the case of two coupled disks, the perturbation
theory analytically separates, though simultaneously solves for,
the symmetric and antisymmetric system eigenmodes. The de-
velopment of the perturbation theory leads to good physical in-
sight for this mode splitting phenomena. Numerical results ob-
tained with the perturbation theory agree well with those
obtained by a more accurate method of moments solution to the
coupled set of electric field integral equations, as well as with
experimental data.

1. INTRODUCTION

PRINTED microstrip disk structures are used exten-
sively as microwave and millimeter-wave integrated-

circuit components. A number of theoretical methods have
been developed to analyze the resonant characteristics of
these structures, the most accurate techniques arising from
rigorous full-wave spectral or space domain methods
which account for all wave phenomena associated with
the structures and the surrounding media [1]-[7]. Appli-
cation of these methods for the study of system reso-
nances of coupled microstrip elements is quite involved
both analytically and numerically, and becomes prohibi-
tive as the number of elements increases.

In this paper, a full-wave perturbation theory for the
analysis of the eigenmodes of the system of N coupled
microstrip disk structures in an open (unshielded) envi-
ronment is developed, based upon a plane-wave spectral
domain formulation of coupled electric field integral
equations (EFIE’s). The coupled set of EFIE’s are solved
in an efficient manner by approximating the system eigen-
mode currents of loosely coupled disks by the eigenmode
currents of the isolated disks, forming a perturbation ma-

trix eigenvalue equation. The method remains tractable as
the number of elements increases, and provides a simple
formulation for the study of nearly degenerate, multi-disk
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coupling. The requirement of nearly degenerate coupling
is not overly restrictive, as many systems of coupled
printed circuit antennas and resonators fall into this cate-
gory.

Numerical results obtained with the perturbation theory
are compared with the method of moments (MoM) soh.l-
tion to the coupled set of EFIE’s. An experimental im-
plementation of two coupled disks is investigated with a
network analyzer. Resonant system eigenmodes are mea-
sured and found to be in good agreement with the pertur-
bation theory and the MoM solution.

II. PROBLEMFORMULATION

The configuration of coupled microstrip disks is shown
in Fig. 1 for N = 2 narrow rectangular structures, al-
though this procedure may be applied to other printed disk
shapes. The conducting disks are located in the cover re-
gion of the tri-layered conductorifilm/cover environment,
at the filmJcover interface. The coordinate origin is cho-
sen at the filmlcover interface, with y normal to and x, z
tangential to that interface. The cover and film regions are
characterized by ~i = n~eoand pi = POfor i = f, c, where
rziis the refractive index of the i th layer. The wavenumber
and intrinsic impedance of each layer are ki = nik. and q,
– qo/n, where (ko, qo) are their free-space counterparts.—

In this work, the cover region is assumed to be free space.
The electric field in the cover is obtained from the

Hertzian potential there [8], and implementation of the
boundary condition for tangential electric fields at the
conducting disk’s surfaces+leads to the coupled set of
EFIE’s for surface cuyent Kn induced on the nth disk by
impressed excitation E’ as

m=l,2, .”. ,N (1)

where i~ is a unit vector tangent to the znth disk and
? = lx + $y + 2Zis the 3-D position vector. The electric
dyadic Green’s function is given in [8], and will not be
repeated here. The coupled set of EFIE’s (1) provide the
fundamental resource for the investigation of EM phe-
nomena in multi-disk systems.

0018-9480192$03.00 @ 1992 IEEE



HANSON AND NYQUIST: FULL-WAVE PERTURIBATION THEORY 1775

! v ,i

/ r“vpi-

Fig. 1. Configuration of two identical coupled microstrip disks.

Eigenmode currents are associated with pole singular-
ities at complex system resonant frec~uencies o = ti~ in
the temporal frequency domain. For u near a pole fre-
quency ti~, the current on the nth element of the N disk
system can be approximated by the singularity expansion
[9]

(2)

where k.~( 7 ) is the eigenmode current of the qth system
mode on the nth disk. Exploiting expansion (2) in the cou-
pled EFIE’s (1) and noting that ii is regular as u ~ COq
results in the homogeneous EFIE system

m=l,2, ”””, N , (3)

with non-trivial solutions for o = w~, which defines the
qth system mode wi~h natural frequency ti~ and element
current distribution k.~.

The direct solution of (3) by the MoM is examined in
Section IV, although it is found that this method is nu-
merically inefficient due to the difficulty of ev@uating the
Sommerfeld-type integrals associated with G’. A cou-
pled-mode perturbation approximation, based upon the
isolated natural-mode currents of coupled-system ele-
ments is consequently prompted.

III. COUPLED-MODEPERTURBATIONTHEORY

In this section the coupled-mode perturbation theory is
developed from the set of coupled EFIE’s (3). The testing
operator j~. dS Z~j(~ ) ‘ is applied to EFIE’s (3), where

~ ~~ is the resonant current of the qth mode on the mth
isolated disk, satisfying the isolated EFIE

“ i:j(;) dS = O m=l,2, .””, N. (5)

The coupled-mode perturbation approximation is tcj as-
sume that the current distributions of the coupled sys,tern
modes are similar to the corresponding isolated mode cur-
rents, for loose, nearly degenerate coupling, i.e.,

This assumption has been used in a similar manner to
quantify the propagation eigenvalues of coupled micro-
strip transmission lines [9]. With current (6), the set of
system mode equations (5) become

f Cfi.(a)a.~ = O m=l,2, ”””, N (7)
~=1

with non-trivial solutions for current amplitudes a~qonly
for complex natural frequencies u = u~ determined from
det [C~ti(C.J)]= 0. Coupling coefficients C%. are identified
as

For nearly-identical disks, the operating frequency re-
gime of significant interaction between disks is identified

‘0) A Taylor’s series expansion of ~’as u = u~~ = co~q.
about c$~ is consequently prompted, leading to

(9)

The leading term vanishes for n = m, by (4) for the res-
onant current on the rnth isolated disk. The coupling coef-
ficient for th[e n = m term becomes

where, by reciprocity of ~’,

i:](? ‘)dS’. (11)

When n # m, the leading term in (9) is non-vanishing.
The term proportional to (o – ti~~) is consequently ren-
dered seconld-order small, leading to

c& .=
!

ds’ F$$’(F‘) “
!

&(7’] 7; (.&])
S. Sm

‘ i:](;) dS (n * m). (12)

Exploiting Equations (10) and (12) in the system mode
equations ~[7) leads to the coupled-mode perturbation-,
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. ..m=l. z,. ... N (13)

which depend only upon the frequency independent cou-
pling coefficients (11) and (12). These constants are de-
termined by the+isolated resonant frequency c$~ and iso-
lated currents k~~, which are obtained by a full-wave
MoM solution of the EFIE for an isolated disk, (4).

Natural system modes are obtained from the solution of
det [C$~(ti)] = O which leads to nontrivial solutions for
amplitudes a.~. For the case of two nearly-degenerate
disks, the system mode frequency is obtained from the
solution of

as a = ti ~ 6, where ti = (col + c02)/2 is the average of

the two isolated resonant frequencies and d = ~
with A = (al – ti2)/2 and A? = C~2C~1/(~f1~~2), The
ratio of natural-mode currents is found as

a2 A

J( )

AZ / C2,—.—
C12

+
z C,2“

(15)
al

These modes correspond to T (antisymmetric) or c (sym-
metric) modes for the general case of non-identical ele-
ments. For two identical elements, @~ = U2 = tiO and

@ such that w = coo~ 12Z;l = ’22 C and a2 = +al. These
system modes correspond to odd (antisymmetric) /even
(symmetric) coupling between the two system elements.

IV. MoM SOLUTIONFOR COUPLEDDLSKSWITHENTIRE
DOMAINBASISFUNCTIONS

In this section, the coupled set of EFIE’s (3) is solved
by an entire domain basis function (EBF) MoM solution,
to provide a comparison to the approximate coupled-mode
theory presented in the previous section.

The current on the nth disk is expanded in a set of EBF’s

J

(16)

where ~~j ( 7’) are the expansion functions for the nth disk
and a.] are the corresponding weighting coefficients.
EFIE’s (3) then become

V? Es. m=l,2, -””, N.

Assuming that each disk has the same number of current
elements, J, the above system has N equations and NJ

unknowns. Testing with the operator

~ [

rn=l,2, ”””, N
~mdsi?,n/(7)“ “ “ “

1=1, 2,”. *,J

which replaces the (;~ “) operation leads to the (JN) X

(JN) system of equations

(17)

The solution of the coupled set of equations (17) leads to
system eigenmodes, obtained with a numerical root-
search.

V. NUMERICAL AND EXPERIMENTAL RESULTS FOR

COUPLED DISKS

In this section, numerical results using the perturbation
theory, (13), are compared with measurements and with
(17), the full-wave MoM solution of the coupled set of
EFIE’s (3). The perturbation theory utilizes the MoM so-
lution of EFIE (4) for the eigenmodes of an isolated disk,
which was solved assuming longitudinal current only.
This has been found to be valid for rectangular disks hav-
ing width much less than a half-wavelength in the film
region [7].

The isolated EFIE (4) was solved using EBF’s

[-1jxz

Cos 21
K~J(p) =

j=l,3,5, . . ..J

m “=12”””N ’18)

I/’ - 1;1
for even modes, or

Hz
sin jr –

K.](7) =
j=l,2,3, ”””, J

h
(19)

n=l,2, ””. ,N

for odd modes, which were also used to solve (17). These
expansion functions were chosen to model the current be-
havior near resonance and are found to be similar to those
used in [1]. A convergence study was performed to de-
termine how many expansion functions were needed to
adequately model the eigenmode current. Table I shows
the results of a root search for the resonant wavenumber
of an isolated disk in the cover region, k~o)l,where aJ is
the normalized amplitude coefficient of the j th term and 1
is the disk half-length. The change in the resonant wave-
number from J = 1 to J = 3 terms is less than 0.06%,
and so typically only one expansion function is required
to model the current near resonance, in agreement with
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TABLE I
ISOLATEDDISK RESONANTWAVENUMBERSFOR.I TERM EBF SOLUTION

J k:o]1
aj az a3

1 (1.14196, .000801) 1.0 0.0 0.0
2 (1.14161, .000803) 1.0 0.0091 0.0
3 (1.14131, .000804) 1.0 0.0091 0.0002

1=2.5 cm, w= .0784 cm, t= .0787 cm, cf= (2.20, –.002)

[10], [11]. Ithasbeen found that asthethickness of the
film layer increases, the coefficients of the second and
third terms in the current expansion increase, although
they are still small compared to that of the first term and
may be neglected.

Experiments have been performed on the system of
coupled disks shown in Fig. 1. Two 21 = 5.0 cm disks of
width 2W = .1568 cm are separated along the x axis by
2dl, measured from center to center as shown in Fig. 2.
The center to center disk separation ~along the z axis is
given by dz. For generality, one of the disks is allowed to
rotate according to the angle 0 as shown in Fig. 1. The
dielectric film was RT/13uroid with ~f = (2.20, –j.002)
and t = .0787 cm. The experiment ccmsisted of measur-
ing the port-to-port transmission between two probes
loosely coupled to the microstrip disks, utilizing the swept
frequency capabilities of a network analyzer [12]. Peaks
of transmission indicate the location of system reso-
nances.

Fig. 3 shows the real resonant system wavenumber in
the cover region, k,, for identical, parallel coupled disks
(dz = O, 0 = O) as transverse separation d, varies. The
solid line is the MoM solution and the dashed line is the
perturbation result. As the transverse separation in-
creases, the system wavenumbers tend towards the iso-
lated disk limit, k~o).As the disks are brought together,
the system modes emerge as symmetric and antisymmet-
ric modes. Comparing results obtained by the various
methods, it is seen that the perturbation approximation is
in good agreement with the MoM solution and with ex-
periment for loosely coupled and moderately coupled
disks. The perturbation method is found to be valid for
transverse separation distances up to approximately 60%
of the disk width. It should also be noted that the sym-
metric mode solution of the perturbation approximation is
in relatively good agreement with the MoM solution and
experiment for tight coupling, The antisymmetric mode
arises from a more complicated interaction between disks,
and so even the MoM solution for the antisymmetric mode
begins to lose accuracy for tight coupling. This could be
improved by increasing the number of expansion func-
tions, although this was not pursued here.

Fig. 4 shows the system wavenumbers for two identical
coupled disks as the longitudinal separation d2varies. For
this configuration dl = 0.1 cm and O = O. The system
modes again form symmetric and antisymmetric modes,
with maximum mode separation occurring when the disks
overlap over half their length.

+p~~~l
Fig. 2. Two coupled disks with transverse separation 2d1.
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Fig. 3. Comparison of perturbation-theory -predicted, MoM predicted, and
experimentally measured system wavenumbers for two identical coupled
micro strip disks as their transverse separation is varied. Cf = 2.20, t =
.0787 cm, 1 = 2.5 cm, w = .0784 cm, d2 = 0.0 cm, @= O.OO
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Fig. 4. Comparwon of perturbation-theory -predicted, MoM predicted, and
experimentally measured system wavenumbers for two identical coupled
microstrip disks as their longitudinal separation is varied. Cf = 2.20, t=
.0787 cm, 1 = 2.5 cm, w = .0784 cm, d, = 0.1 cm, O = O.OO

The system resonant wavenumbers of two identical
coupled disks are shown in Fig. 5, as the angle between
them varies. The longitudinal displacement is dz ==2.6
cm, and the transverse separation is dl = 0.1 cm. The
relative amzl,ebetween the disks, /3, is varied from O to 40
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microstrip disks astheangle between them is varied. Cf = 2.20, t= .0787
cm, 1 = 2.5 cm, w = .0784 cm, d, = 0.1 cm, da = 2.6cm

1 15

---- Perturbation

10
— MOM

x Experiment
x x x_.—————-._x

05 -
x

00

95
xxx

:090L—————J
000 1 00 200 300

Separatlon(dl–w)/w

Fig. 6. Comparison ofperturbation-theory -predicted, MoMpredicted, and
experimentally measured system wavenumbers for two non-identical cou-
pled microstrip disks astheir transverse separation isvarled. ef = 2.20, t
= .0787 cm, l, =2.5 cm,12 =2.25 cm, w, =w, = .0784 cm, d2 =0.0
cm, 8 = O.OO

degrees. It can be seen that the maximum coupling exists
between disks when 0 = O degrees, and that the coupling
decreases as 6’increases until the disks are virtually un-
coupled.

It should be noted that in all of the above figures, re-
sults are presented for system frequencies near the domi-
nant mode, q = 1 in (3). The theoretical curves were nor-
malized to the same isolated resonant wavenumber,
obtained from (4), and the experimental points were nor-
malized to the measured isolated resonant wavenumber.
These isolated wavenumbers differed by less than 1.5%.

The system of two coupled, non-identical disks is con-
sidered in Fig. 6, for 21] = 5.0 cm, 212 = 4.5 cm, and
2w, = 2w~ = .1568 cm. The system wavenumber is
shown as the transverse separation, d], varies, with d2 =
O, 0 = O. For this system, the two modes split symmet-
rically about the average of the isolated disks’ resonant

TABLE II
COMPARISON OF COST OF MoM AND PERTURBATION SOLUTIONS

N M cost~o~ Costpe. Cost Ratio

2 1 30 13
3 1 90 21
4 1 200 30
2 10 300 22
3 10 900 48
4 10 2000 84

@) = (ky + k:;))/2 ,wavenumbers, k~v~,
normalize the plot.

VI. DISCUSSION

2.3
4.3
6.7

13.6
18.8
23.8

which is used to

The perturbation approximation is found to be an effi-
cient method of determining the system eigenmodes of
coupled microstrip disks, compared to the full MoM so-
lution which requires a numerical root search of the cou-
pled system of equations (17). As an example, consider
an N-elements ystem of non-identical coupled disks, each
with one expansion function per element. The evaluation
of one ‘‘Sommerfeld-type” integral will be considered as
one unit of “cost.”

The full MoM solution requires N(N + 1)/2 units to
fill the matrix obtained from (17). The root-search re-
quires approximately five iterations for each of the N in-
dependent modes, such that the full MoM solution costs
2.5iVz(N + 1) units. To evaluate the system eigenmodes
for M different geometries (different values of d,, dz, 0)
requires a total cost of 2. 5N2A4(N + 1) units.

The perturbation theory requires a root-search for the
eigenmodes of each isolated element, based on (4). Five
iterations for the each of the N different disks is required
once, with the addition of the evaluation of (11) N times.
A total of N(N – 1)/2 evaluations of coupling coefficient
(12) is required for each of the M different geometries,
bringing the total cost to 6N + MN(N – 1)/2 units. The
cost ratio, defined as cost~OM/costP,fl, is given in Table
II. It is found that the perturbation theory is at least twice
as fast as the MoM solution for the worst case scenario of
two coupled disks when only one geometrical configura-
tion is of interest. The time savings increase as the num-
ber of coupled disks increase or the number of different
geometries of interest increase.

VII. CONCLUSION

A full-wave perturbation theory for the analysis of cou-
pled microstrip disks has been developed. This method is
based on the system of coupled EFIE’s which rigorously
model the microstrip environment. The perturbation the-
ory makes use of the isolated disks’ current distributions
and resonant frequencies to characterize the coupled sys-
tem of disks, and is found to be very efficient compared
to the full MoM solution to the problem. For the case of
two coupled disks, the system eigenmodes are seen to cor-
respond to symmetric and antisymmetric modes, shifted
symmetrically about their isolated limits. Numerically, the
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perturbation theory agrees with the full MoM solution and
with experiment for loose to moderate coupling.
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